MakeItFrom.com
Menu (ESC)

Grade Ti-Pd16 Titanium vs. C90900 Bronze

Grade Ti-Pd16 titanium belongs to the titanium alloys classification, while C90900 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd16 titanium and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
90
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 390
280
Tensile Strength: Yield (Proof), MPa 310
140

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
980
Melting Onset (Solidus), °C 1610
820
Specific Heat Capacity, J/kg-K 540
360
Thermal Conductivity, W/m-K 22
65
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
11

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 36
3.9
Embodied Energy, MJ/kg 600
64
Embodied Water, L/kg 230
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
35
Resilience: Unit (Modulus of Resilience), kJ/m3 440
89
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 24
8.8
Strength to Weight: Bending, points 26
11
Thermal Diffusivity, mm2/s 8.9
21
Thermal Shock Resistance, points 30
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
86 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Nickel (Ni), % 0 to 0.030
0 to 0.5
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
12 to 14
Titanium (Ti), % 98.8 to 99.96
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6