MakeItFrom.com
Menu (ESC)

Grade Ti-Pd17 Titanium vs. AWS E409Nb

Grade Ti-Pd17 titanium belongs to the titanium alloys classification, while AWS E409Nb belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd17 titanium and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
23
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 270
500
Tensile Strength: Yield (Proof), MPa 190
380

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
3.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
2.9
Embodied Energy, MJ/kg 600
42
Embodied Water, L/kg 230
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 8.8
6.8
Thermal Shock Resistance, points 21
14

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.12
Chromium (Cr), % 0
11 to 14
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
80.2 to 88.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.030
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.9 to 99.96
0
Residuals, % 0 to 0.4
0