MakeItFrom.com
Menu (ESC)

Grade Ti-Pd17 Titanium vs. EN 1.5502 Steel

Grade Ti-Pd17 titanium belongs to the titanium alloys classification, while EN 1.5502 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd17 titanium and the bottom bar is EN 1.5502 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
120 to 160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
12 to 20
Fatigue Strength, MPa 140
190 to 290
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 270
400 to 1380
Tensile Strength: Yield (Proof), MPa 190
270 to 440

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
52
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
8.1

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
1.4
Embodied Energy, MJ/kg 600
19
Embodied Water, L/kg 230
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
41 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 180
200 to 520
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 17
14 to 49
Strength to Weight: Bending, points 21
15 to 35
Thermal Diffusivity, mm2/s 8.8
14
Thermal Shock Resistance, points 21
12 to 40

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.1
0.15 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
98 to 99.249
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 98.9 to 99.96
0
Residuals, % 0 to 0.4
0