MakeItFrom.com
Menu (ESC)

Grade Ti-Pd17 Titanium vs. C16200 Copper

Grade Ti-Pd17 titanium belongs to the titanium alloys classification, while C16200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd17 titanium and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 22
2.0 to 56
Fatigue Strength, MPa 140
100 to 210
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 270
240 to 550
Tensile Strength: Yield (Proof), MPa 190
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
370
Melting Completion (Liquidus), °C 1660
1080
Melting Onset (Solidus), °C 1610
1030
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 21
360
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
90
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
90

Otherwise Unclassified Properties

Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 36
2.6
Embodied Energy, MJ/kg 600
41
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 180
10 to 970
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 17
7.4 to 17
Strength to Weight: Bending, points 21
9.6 to 17
Thermal Diffusivity, mm2/s 8.8
100
Thermal Shock Resistance, points 21
8.7 to 20

Alloy Composition

Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
98.6 to 99.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.2
Nickel (Ni), % 0 to 0.030
0
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Titanium (Ti), % 98.9 to 99.96
0
Residuals, % 0 to 0.4
0