MakeItFrom.com
Menu (ESC)

Grade Ti-Pd17 Titanium vs. N06603 Nickel

Grade Ti-Pd17 titanium belongs to the titanium alloys classification, while N06603 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd17 titanium and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 22
28
Fatigue Strength, MPa 140
230
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 270
740
Tensile Strength: Yield (Proof), MPa 190
340

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 320
1000
Melting Completion (Liquidus), °C 1660
1340
Melting Onset (Solidus), °C 1610
1300
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
11
Thermal Expansion, µm/m-K 8.7
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
1.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 36
8.4
Embodied Energy, MJ/kg 600
120
Embodied Water, L/kg 230
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
170
Resilience: Unit (Modulus of Resilience), kJ/m3 180
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 8.8
2.9
Thermal Shock Resistance, points 21
20

Alloy Composition

Aluminum (Al), % 0
2.4 to 3.0
Carbon (C), % 0 to 0.1
0.2 to 0.4
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
8.0 to 11
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0 to 0.030
57.7 to 65.6
Oxygen (O), % 0 to 0.25
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.9 to 99.96
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0
0.010 to 0.1
Residuals, % 0 to 0.4
0