MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. 319.0 Aluminum

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while 319.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is 319.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
78 to 84
Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 17
1.8 to 2.0
Fatigue Strength, MPa 350
76 to 80
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 710
190 to 240
Tensile Strength: Yield (Proof), MPa 540
110 to 180

Thermal Properties

Latent Heat of Fusion, J/g 410
480
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
600
Melting Onset (Solidus), °C 1590
540
Specific Heat Capacity, J/kg-K 550
880
Thermal Conductivity, W/m-K 8.2
110
Thermal Expansion, µm/m-K 9.1
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
84

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.9
Embodied Carbon, kg CO2/kg material 41
7.7
Embodied Energy, MJ/kg 670
140
Embodied Water, L/kg 270
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
3.3 to 3.9
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
88 to 220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
48
Strength to Weight: Axial, points 44
18 to 24
Strength to Weight: Bending, points 39
25 to 30
Thermal Diffusivity, mm2/s 3.3
44
Thermal Shock Resistance, points 52
8.6 to 11

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
85.8 to 91.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
0 to 0.35
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
5.5 to 6.5
Titanium (Ti), % 92.5 to 95.5
0 to 0.25
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5