MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. AISI 403 Stainless Steel

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
16 to 25
Fatigue Strength, MPa 350
200 to 340
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 710
530 to 780
Tensile Strength: Yield (Proof), MPa 540
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 330
740
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.2
28
Thermal Expansion, µm/m-K 9.1
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
1.9
Embodied Energy, MJ/kg 670
27
Embodied Water, L/kg 270
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
210 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 44
19 to 28
Strength to Weight: Bending, points 39
19 to 24
Thermal Diffusivity, mm2/s 3.3
7.6
Thermal Shock Resistance, points 52
20 to 29

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
84.7 to 88.5
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
0 to 0.6
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0