MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. EN 1.4313 Stainless Steel

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while EN 1.4313 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is EN 1.4313 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
12 to 17
Fatigue Strength, MPa 350
340 to 510
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 710
750 to 1000
Tensile Strength: Yield (Proof), MPa 540
580 to 910

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
780
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.2
25
Thermal Expansion, µm/m-K 9.1
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
2.4
Embodied Energy, MJ/kg 670
34
Embodied Water, L/kg 270
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
870 to 2100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 44
27 to 36
Strength to Weight: Bending, points 39
23 to 28
Thermal Diffusivity, mm2/s 3.3
6.7
Thermal Shock Resistance, points 52
27 to 36

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 0
12 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
78.5 to 84.2
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.3 to 0.7
Nickel (Ni), % 0 to 0.050
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.020
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0