MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. CC381H Copper-nickel

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while CC381H copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is CC381H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
91
Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 17
20
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
52
Tensile Strength: Ultimate (UTS), MPa 710
380
Tensile Strength: Yield (Proof), MPa 540
140

Thermal Properties

Latent Heat of Fusion, J/g 410
240
Maximum Temperature: Mechanical, °C 330
260
Melting Completion (Liquidus), °C 1640
1180
Melting Onset (Solidus), °C 1590
1120
Specific Heat Capacity, J/kg-K 550
410
Thermal Conductivity, W/m-K 8.2
30
Thermal Expansion, µm/m-K 9.1
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 41
5.0
Embodied Energy, MJ/kg 670
73
Embodied Water, L/kg 270
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
60
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
68
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 44
12
Strength to Weight: Bending, points 39
13
Thermal Diffusivity, mm2/s 3.3
8.4
Thermal Shock Resistance, points 52
13

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.010
Carbon (C), % 0 to 0.1
0 to 0.030
Copper (Cu), % 0
64.5 to 69.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0.5 to 1.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0
0.6 to 1.2
Nickel (Ni), % 0 to 0.050
29 to 31
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0