MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. CC499K Bronze

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while CC499K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
73
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
13
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 710
260
Tensile Strength: Yield (Proof), MPa 540
120

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 330
170
Melting Completion (Liquidus), °C 1640
1000
Melting Onset (Solidus), °C 1590
920
Specific Heat Capacity, J/kg-K 550
370
Thermal Conductivity, W/m-K 8.2
73
Thermal Expansion, µm/m-K 9.1
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
12

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 41
3.1
Embodied Energy, MJ/kg 670
51
Embodied Water, L/kg 270
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
27
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
65
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 44
8.1
Strength to Weight: Bending, points 39
10
Thermal Diffusivity, mm2/s 3.3
22
Thermal Shock Resistance, points 52
9.2

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.020
Copper (Cu), % 0
84 to 88
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.3
Lead (Pb), % 0
0 to 3.0
Nickel (Ni), % 0 to 0.050
0 to 0.6
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0 to 0.4
0