MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. C90900 Bronze

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while C90900 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
90
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 710
280
Tensile Strength: Yield (Proof), MPa 540
140

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 330
160
Melting Completion (Liquidus), °C 1640
980
Melting Onset (Solidus), °C 1590
820
Specific Heat Capacity, J/kg-K 550
360
Thermal Conductivity, W/m-K 8.2
65
Thermal Expansion, µm/m-K 9.1
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
11

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 41
3.9
Embodied Energy, MJ/kg 670
64
Embodied Water, L/kg 270
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
35
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
89
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 44
8.8
Strength to Weight: Bending, points 39
11
Thermal Diffusivity, mm2/s 3.3
21
Thermal Shock Resistance, points 52
10

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
86 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Nickel (Ni), % 0 to 0.050
0 to 0.5
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
12 to 14
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6