MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. S15500 Stainless Steel

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
290 to 430
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
6.8 to 16
Fatigue Strength, MPa 350
350 to 650
Poisson's Ratio 0.32
0.28
Rockwell C Hardness 34
27 to 46
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 710
890 to 1490
Tensile Strength: Yield (Proof), MPa 540
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
820
Melting Completion (Liquidus), °C 1640
1430
Melting Onset (Solidus), °C 1590
1380
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.2
17
Thermal Expansion, µm/m-K 9.1
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
2.7
Embodied Energy, MJ/kg 670
39
Embodied Water, L/kg 270
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
890 to 4460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 44
32 to 53
Strength to Weight: Bending, points 39
26 to 37
Thermal Diffusivity, mm2/s 3.3
4.6
Thermal Shock Resistance, points 52
30 to 50

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 0
2.5 to 4.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
71.9 to 79.9
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0