MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. S31260 Stainless Steel

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while S31260 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
260
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
23
Fatigue Strength, MPa 350
370
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 710
790
Tensile Strength: Yield (Proof), MPa 540
540

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.2
16
Thermal Expansion, µm/m-K 9.1
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
3.9
Embodied Energy, MJ/kg 670
53
Embodied Water, L/kg 270
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
160
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
720
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 44
28
Strength to Weight: Bending, points 39
24
Thermal Diffusivity, mm2/s 3.3
4.3
Thermal Shock Resistance, points 52
22

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
59.6 to 67.6
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.050
5.5 to 7.5
Nitrogen (N), % 0
0.1 to 0.3
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.5 to 95.5
0
Tungsten (W), % 0
0.1 to 0.5
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0