MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. S32750 Stainless Steel

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while S32750 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
270
Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 17
17
Fatigue Strength, MPa 350
360
Poisson's Ratio 0.32
0.27
Rockwell C Hardness 34
28
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 710
860
Tensile Strength: Yield (Proof), MPa 540
590

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.2
15
Thermal Expansion, µm/m-K 9.1
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 41
4.1
Embodied Energy, MJ/kg 670
56
Embodied Water, L/kg 270
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
860
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 44
31
Strength to Weight: Bending, points 39
26
Thermal Diffusivity, mm2/s 3.3
4.0
Thermal Shock Resistance, points 52
25

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
58.1 to 66.8
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0 to 0.050
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0