MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. S35125 Stainless Steel

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while S35125 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is S35125 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
39
Fatigue Strength, MPa 350
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 710
540
Tensile Strength: Yield (Proof), MPa 540
230

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 330
1100
Melting Completion (Liquidus), °C 1640
1430
Melting Onset (Solidus), °C 1590
1380
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.2
12
Thermal Expansion, µm/m-K 9.1
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.9

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 41
6.4
Embodied Energy, MJ/kg 670
89
Embodied Water, L/kg 270
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 44
19
Strength to Weight: Bending, points 39
18
Thermal Diffusivity, mm2/s 3.3
3.1
Thermal Shock Resistance, points 52
12

Alloy Composition

Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 0
20 to 23
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
36.2 to 45.8
Manganese (Mn), % 0
1.0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.050
31 to 35
Niobium (Nb), % 0
0.25 to 0.6
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 92.5 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0