MakeItFrom.com
Menu (ESC)

Grade Ti-Pd7B Titanium vs. 3005 Aluminum

Grade Ti-Pd7B titanium belongs to the titanium alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd7B titanium and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
33 to 73
Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 17
1.1 to 16
Fatigue Strength, MPa 200
53 to 100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 390
140 to 270
Tensile Strength: Yield (Proof), MPa 310
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
660
Melting Onset (Solidus), °C 1610
640
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 22
160
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
42
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
140

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.8
Embodied Carbon, kg CO2/kg material 49
8.2
Embodied Energy, MJ/kg 840
150
Embodied Water, L/kg 520
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 440
18 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
49
Strength to Weight: Axial, points 24
14 to 27
Strength to Weight: Bending, points 26
21 to 33
Thermal Diffusivity, mm2/s 8.9
64
Thermal Shock Resistance, points 30
6.0 to 12

Alloy Composition

Aluminum (Al), % 0
95.7 to 98.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0 to 0.6
Titanium (Ti), % 98.8 to 99.9
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15