MakeItFrom.com
Menu (ESC)

Grade Ti-Pd7B Titanium vs. 5010 Aluminum

Grade Ti-Pd7B titanium belongs to the titanium alloys classification, while 5010 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd7B titanium and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 17
1.1 to 23
Fatigue Strength, MPa 200
35 to 83
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 390
100 to 210
Tensile Strength: Yield (Proof), MPa 310
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
630
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 22
200
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
45
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
150

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 49
8.2
Embodied Energy, MJ/kg 840
150
Embodied Water, L/kg 520
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 440
10 to 270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 24
10 to 22
Strength to Weight: Bending, points 26
18 to 29
Thermal Diffusivity, mm2/s 8.9
82
Thermal Shock Resistance, points 30
4.5 to 9.4

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.7
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0
0.1 to 0.3
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 98.8 to 99.9
0 to 0.1
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15