MakeItFrom.com
Menu (ESC)

Grade Ti-Pd7B Titanium vs. AWS BNi-1

Grade Ti-Pd7B titanium belongs to the titanium alloys classification, while AWS BNi-1 belongs to the nickel alloys. There are 18 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd7B titanium and the bottom bar is AWS BNi-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
180
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 40
70
Tensile Strength: Ultimate (UTS), MPa 390
450

Thermal Properties

Latent Heat of Fusion, J/g 420
360
Melting Completion (Liquidus), °C 1660
1040
Melting Onset (Solidus), °C 1610
980
Specific Heat Capacity, J/kg-K 540
500
Thermal Expansion, µm/m-K 8.7
12

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 49
8.8
Embodied Energy, MJ/kg 840
120
Embodied Water, L/kg 520
240

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
16
Strength to Weight: Bending, points 26
16
Thermal Shock Resistance, points 30
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
2.8 to 3.5
Carbon (C), % 0 to 0.1
0.6 to 0.9
Chromium (Cr), % 0
13 to 15
Cobalt (Co), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
4.0 to 5.0
Nickel (Ni), % 0 to 0.050
69.8 to 75.7
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
4.0 to 5.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.8 to 99.9
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5