MakeItFrom.com
Menu (ESC)

Grade Ti-Pd7B Titanium vs. C38000 Brass

Grade Ti-Pd7B titanium belongs to the titanium alloys classification, while C38000 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd7B titanium and the bottom bar is C38000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 17
17
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 390
380
Tensile Strength: Yield (Proof), MPa 310
120

Thermal Properties

Latent Heat of Fusion, J/g 420
170
Maximum Temperature: Mechanical, °C 320
110
Melting Completion (Liquidus), °C 1660
800
Melting Onset (Solidus), °C 1610
760
Specific Heat Capacity, J/kg-K 540
380
Thermal Conductivity, W/m-K 22
110
Thermal Expansion, µm/m-K 8.7
21

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.0
Embodied Carbon, kg CO2/kg material 49
2.7
Embodied Energy, MJ/kg 840
46
Embodied Water, L/kg 520
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
50
Resilience: Unit (Modulus of Resilience), kJ/m3 440
74
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 24
13
Strength to Weight: Bending, points 26
14
Thermal Diffusivity, mm2/s 8.9
37
Thermal Shock Resistance, points 30
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
55 to 60
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.35
Lead (Pb), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 98.8 to 99.9
0
Zinc (Zn), % 0
35.9 to 43.5
Residuals, % 0
0 to 0.5