MakeItFrom.com
Menu (ESC)

Grade Ti-Pd7B Titanium vs. C82000 Copper

Grade Ti-Pd7B titanium belongs to the titanium alloys classification, while C82000 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd7B titanium and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 17
8.0 to 20
Poisson's Ratio 0.32
0.34
Rockwell B Hardness 83
55 to 95
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 390
350 to 690
Tensile Strength: Yield (Proof), MPa 310
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 320
220
Melting Completion (Liquidus), °C 1660
1090
Melting Onset (Solidus), °C 1610
970
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 22
260
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
45
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
46

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 49
5.0
Embodied Energy, MJ/kg 840
77
Embodied Water, L/kg 520
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 440
80 to 1120
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 24
11 to 22
Strength to Weight: Bending, points 26
12 to 20
Thermal Diffusivity, mm2/s 8.9
76
Thermal Shock Resistance, points 30
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Nickel (Ni), % 0 to 0.050
0 to 0.2
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 98.8 to 99.9
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5