MakeItFrom.com
Menu (ESC)

Grade Ti-Pd7B Titanium vs. N08366 Stainless Steel

Grade Ti-Pd7B titanium belongs to the titanium alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd7B titanium and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180
Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 17
34
Fatigue Strength, MPa 200
190
Poisson's Ratio 0.32
0.28
Rockwell B Hardness 83
82
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 390
590
Tensile Strength: Yield (Proof), MPa 310
240

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
460
Thermal Conductivity, W/m-K 22
13
Thermal Expansion, µm/m-K 8.7
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
2.0

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 49
6.2
Embodied Energy, MJ/kg 840
84
Embodied Water, L/kg 520
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
160
Resilience: Unit (Modulus of Resilience), kJ/m3 440
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 8.9
3.4
Thermal Shock Resistance, points 30
13

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.035
Chromium (Cr), % 0
20 to 22
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
42.4 to 50.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.050
23.5 to 25.5
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0