MakeItFrom.com
Menu (ESC)

Grade Ti-Pd7B Titanium vs. R58150 Titanium

Both grade Ti-Pd7B titanium and R58150 titanium are titanium alloys. They have 85% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd7B titanium and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 17
13
Fatigue Strength, MPa 200
330
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
52
Tensile Strength: Ultimate (UTS), MPa 390
770
Tensile Strength: Yield (Proof), MPa 310
550

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 320
320
Melting Completion (Liquidus), °C 1660
1760
Melting Onset (Solidus), °C 1610
1700
Specific Heat Capacity, J/kg-K 540
500
Thermal Expansion, µm/m-K 8.7
8.4

Otherwise Unclassified Properties

Density, g/cm3 4.5
5.4
Embodied Carbon, kg CO2/kg material 49
31
Embodied Energy, MJ/kg 840
480
Embodied Water, L/kg 520
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
94
Resilience: Unit (Modulus of Resilience), kJ/m3 440
1110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
32
Strength to Weight: Axial, points 24
40
Strength to Weight: Bending, points 26
35
Thermal Shock Resistance, points 30
48

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.1
Hydrogen (H), % 0 to 0.015
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.1
Molybdenum (Mo), % 0
14 to 16
Nickel (Ni), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0 to 0.4
0 to 0.2
Palladium (Pd), % 0.12 to 0.3
0
Titanium (Ti), % 98.8 to 99.9
83.5 to 86
Residuals, % 0 to 0.4
0