MakeItFrom.com
Menu (ESC)

Grade Ti-Pd7B Titanium vs. S82031 Stainless Steel

Grade Ti-Pd7B titanium belongs to the titanium alloys classification, while S82031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd7B titanium and the bottom bar is S82031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
39
Fatigue Strength, MPa 200
490
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 390
780
Tensile Strength: Yield (Proof), MPa 310
570

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
980
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1390
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 22
15
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 49
2.8
Embodied Energy, MJ/kg 840
39
Embodied Water, L/kg 520
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
280
Resilience: Unit (Modulus of Resilience), kJ/m3 440
820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
28
Strength to Weight: Bending, points 26
24
Thermal Diffusivity, mm2/s 8.9
3.9
Thermal Shock Resistance, points 30
22

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
68 to 78.3
Manganese (Mn), % 0
0 to 2.5
Molybdenum (Mo), % 0
0.6 to 1.4
Nickel (Ni), % 0 to 0.050
2.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.24
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0