MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. 355.0 Aluminum

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while 355.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is 355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
72 to 83
Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 13
1.5 to 2.6
Fatigue Strength, MPa 260
55 to 70
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 500
200 to 260
Tensile Strength: Yield (Proof), MPa 430
150 to 190

Thermal Properties

Latent Heat of Fusion, J/g 420
470
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
620
Melting Onset (Solidus), °C 1610
560
Specific Heat Capacity, J/kg-K 540
890
Thermal Conductivity, W/m-K 21
150 to 170
Thermal Expansion, µm/m-K 8.7
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
38 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
120 to 140

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 49
8.0
Embodied Energy, MJ/kg 840
150
Embodied Water, L/kg 520
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
2.7 to 5.9
Resilience: Unit (Modulus of Resilience), kJ/m3 880
150 to 250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
51
Strength to Weight: Axial, points 31
20 to 27
Strength to Weight: Bending, points 31
28 to 33
Thermal Diffusivity, mm2/s 8.6
60 to 69
Thermal Shock Resistance, points 39
9.1 to 12

Alloy Composition

Aluminum (Al), % 0
90.3 to 94.1
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0
1.0 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.6
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
4.5 to 5.5
Titanium (Ti), % 98.8 to 99.9
0 to 0.25
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15