MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. 358.0 Aluminum

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while 358.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 13
3.5 to 6.0
Fatigue Strength, MPa 260
100 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 500
350 to 370
Tensile Strength: Yield (Proof), MPa 430
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 420
520
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
600
Melting Onset (Solidus), °C 1610
560
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
150
Thermal Expansion, µm/m-K 8.7
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
36
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
130

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.6
Embodied Carbon, kg CO2/kg material 49
8.7
Embodied Energy, MJ/kg 840
160
Embodied Water, L/kg 520
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 880
590 to 710
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
53
Strength to Weight: Axial, points 31
37 to 39
Strength to Weight: Bending, points 31
42 to 44
Thermal Diffusivity, mm2/s 8.6
63
Thermal Shock Resistance, points 39
16 to 17

Alloy Composition

Aluminum (Al), % 0
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
7.6 to 8.6
Titanium (Ti), % 98.8 to 99.9
0.1 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15