MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. 5019 Aluminum

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while 5019 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 13
2.2 to 18
Fatigue Strength, MPa 260
100 to 160
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 500
280 to 360
Tensile Strength: Yield (Proof), MPa 430
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
540
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
130
Thermal Expansion, µm/m-K 8.7
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
29
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
98

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 49
9.0
Embodied Energy, MJ/kg 840
150
Embodied Water, L/kg 520
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 880
110 to 650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
51
Strength to Weight: Axial, points 31
29 to 38
Strength to Weight: Bending, points 31
35 to 42
Thermal Diffusivity, mm2/s 8.6
52
Thermal Shock Resistance, points 39
13 to 16

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.3
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0
0.1 to 0.6
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 98.8 to 99.9
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15