MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. 6066 Aluminum

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while 6066 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 13
7.8 to 17
Fatigue Strength, MPa 260
94 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 500
160 to 400
Tensile Strength: Yield (Proof), MPa 430
93 to 360

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
560
Specific Heat Capacity, J/kg-K 540
890
Thermal Conductivity, W/m-K 21
150
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
130

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.8
Embodied Carbon, kg CO2/kg material 49
8.3
Embodied Energy, MJ/kg 840
150
Embodied Water, L/kg 520
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
23 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 880
61 to 920
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
49
Strength to Weight: Axial, points 31
16 to 39
Strength to Weight: Bending, points 31
23 to 43
Thermal Diffusivity, mm2/s 8.6
61
Thermal Shock Resistance, points 39
6.9 to 17

Alloy Composition

Aluminum (Al), % 0
93 to 97
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0
0.7 to 1.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0
0.6 to 1.1
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0.9 to 1.8
Titanium (Ti), % 98.8 to 99.9
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15