MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. 6261 Aluminum

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while 6261 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is 6261 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 13
9.0 to 16
Fatigue Strength, MPa 260
60 to 120
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 500
150 to 300
Tensile Strength: Yield (Proof), MPa 430
100 to 260

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
640
Melting Onset (Solidus), °C 1610
610
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
180
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
48
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
160

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 49
8.3
Embodied Energy, MJ/kg 840
150
Embodied Water, L/kg 520
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
21 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 880
77 to 500
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 31
15 to 31
Strength to Weight: Bending, points 31
23 to 37
Thermal Diffusivity, mm2/s 8.6
75
Thermal Shock Resistance, points 39
6.5 to 13

Alloy Composition

Aluminum (Al), % 0
96.6 to 98.6
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0.15 to 0.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.4
Magnesium (Mg), % 0
0.7 to 1.0
Manganese (Mn), % 0
0.2 to 0.35
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0.4 to 0.7
Titanium (Ti), % 98.8 to 99.9
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15