MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. AWS ER90S-B9

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
18
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 500
690
Tensile Strength: Yield (Proof), MPa 430
470

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
8.1

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
2.6
Embodied Energy, MJ/kg 840
37
Embodied Water, L/kg 520
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
110
Resilience: Unit (Modulus of Resilience), kJ/m3 880
570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
25
Strength to Weight: Bending, points 31
22
Thermal Diffusivity, mm2/s 8.6
6.9
Thermal Shock Resistance, points 39
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.1
0.070 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
84.4 to 90.7
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0 to 0.050
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.8 to 99.9
0
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5