MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. EN 1.1191 Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while EN 1.1191 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is EN 1.1191 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
16 to 17
Fatigue Strength, MPa 260
210 to 290
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 500
630 to 700
Tensile Strength: Yield (Proof), MPa 430
310 to 440

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
48
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
8.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
1.4
Embodied Energy, MJ/kg 840
19
Embodied Water, L/kg 520
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
83 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 880
260 to 510
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 31
22 to 25
Strength to Weight: Bending, points 31
21 to 22
Thermal Diffusivity, mm2/s 8.6
13
Thermal Shock Resistance, points 39
20 to 22

Alloy Composition

Carbon (C), % 0 to 0.1
0.42 to 0.5
Chromium (Cr), % 0
0 to 0.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
97.3 to 99.08
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0 to 0.4
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0