MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. EN 1.4542 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
5.7 to 20
Fatigue Strength, MPa 260
370 to 640
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 500
880 to 1470
Tensile Strength: Yield (Proof), MPa 430
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
860
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.8

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
2.7
Embodied Energy, MJ/kg 840
39
Embodied Water, L/kg 520
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 880
880 to 4360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
31 to 52
Strength to Weight: Bending, points 31
26 to 37
Thermal Diffusivity, mm2/s 8.6
4.3
Thermal Shock Resistance, points 39
29 to 49

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
69.6 to 79
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.050
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0