MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. EN 1.4597 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while EN 1.4597 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is EN 1.4597 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
210
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
45
Fatigue Strength, MPa 260
300
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 500
680
Tensile Strength: Yield (Proof), MPa 430
330

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
860
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1350
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.8

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 49
2.5
Embodied Energy, MJ/kg 840
36
Embodied Water, L/kg 520
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
250
Resilience: Unit (Modulus of Resilience), kJ/m3 880
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
25
Strength to Weight: Bending, points 31
22
Thermal Diffusivity, mm2/s 8.6
4.1
Thermal Shock Resistance, points 39
15

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 0
2.0 to 3.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
63 to 76.4
Manganese (Mn), % 0
6.5 to 9.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
0 to 3.0
Nitrogen (N), % 0
0.1 to 0.3
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0