MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. CC380H Copper-nickel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
80
Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 13
26
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
47
Tensile Strength: Ultimate (UTS), MPa 500
310
Tensile Strength: Yield (Proof), MPa 430
120

Thermal Properties

Latent Heat of Fusion, J/g 420
220
Maximum Temperature: Mechanical, °C 320
220
Melting Completion (Liquidus), °C 1660
1130
Melting Onset (Solidus), °C 1610
1080
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
46
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
11

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 49
3.8
Embodied Energy, MJ/kg 840
58
Embodied Water, L/kg 520
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
65
Resilience: Unit (Modulus of Resilience), kJ/m3 880
59
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 31
9.8
Strength to Weight: Bending, points 31
12
Thermal Diffusivity, mm2/s 8.6
13
Thermal Shock Resistance, points 39
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
84.5 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0
1.0 to 1.5
Nickel (Ni), % 0 to 0.050
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Silicon (Si), % 0
0 to 0.1
Titanium (Ti), % 98.8 to 99.9
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0