MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. ISO-WD32260 Magnesium

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while ISO-WD32260 magnesium belongs to the magnesium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is ISO-WD32260 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
46
Elongation at Break, % 13
4.5 to 6.0
Fatigue Strength, MPa 260
150 to 190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
18
Tensile Strength: Ultimate (UTS), MPa 500
330 to 340
Tensile Strength: Yield (Proof), MPa 430
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 420
330
Maximum Temperature: Mechanical, °C 320
120
Melting Completion (Liquidus), °C 1660
600
Melting Onset (Solidus), °C 1610
520
Specific Heat Capacity, J/kg-K 540
970
Thermal Conductivity, W/m-K 21
110
Thermal Expansion, µm/m-K 8.7
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
28
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
140

Otherwise Unclassified Properties

Density, g/cm3 4.5
1.9
Embodied Carbon, kg CO2/kg material 49
23
Embodied Energy, MJ/kg 840
160
Embodied Water, L/kg 520
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
14 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 880
560 to 700
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
63
Strength to Weight: Axial, points 31
48 to 51
Strength to Weight: Bending, points 31
56 to 58
Thermal Diffusivity, mm2/s 8.6
63
Thermal Shock Resistance, points 39
19 to 20

Alloy Composition

Carbon (C), % 0 to 0.1
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0
Magnesium (Mg), % 0
92.7 to 94.8
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Titanium (Ti), % 98.8 to 99.9
0
Zinc (Zn), % 0
4.8 to 6.2
Zirconium (Zr), % 0
0.45 to 0.8
Residuals, % 0
0 to 0.3