MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. Nickel 686

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while nickel 686 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 13
51
Fatigue Strength, MPa 260
410
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 500
780
Tensile Strength: Yield (Proof), MPa 430
350

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 320
980
Melting Completion (Liquidus), °C 1660
1380
Melting Onset (Solidus), °C 1610
1340
Specific Heat Capacity, J/kg-K 540
420
Thermal Conductivity, W/m-K 21
9.8
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
1.4

Otherwise Unclassified Properties

Density, g/cm3 4.5
9.0
Embodied Carbon, kg CO2/kg material 49
12
Embodied Energy, MJ/kg 840
170
Embodied Water, L/kg 520
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
320
Resilience: Unit (Modulus of Resilience), kJ/m3 880
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 31
24
Strength to Weight: Bending, points 31
21
Thermal Diffusivity, mm2/s 8.6
2.6
Thermal Shock Resistance, points 39
21

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.010
Chromium (Cr), % 0
19 to 23
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 5.0
Manganese (Mn), % 0
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0 to 0.050
49.5 to 63
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.8 to 99.9
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Residuals, % 0 to 0.4
0