MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. SAE-AISI 52100 Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while SAE-AISI 52100 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is SAE-AISI 52100 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
180 to 210
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
10 to 20
Fatigue Strength, MPa 260
250 to 340
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 500
590 to 2010
Tensile Strength: Yield (Proof), MPa 430
360 to 560

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
430
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
47
Thermal Expansion, µm/m-K 8.7
12 to 13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
8.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
1.5
Embodied Energy, MJ/kg 840
20
Embodied Water, L/kg 520
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
54 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 880
350 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 31
21 to 72
Strength to Weight: Bending, points 31
20 to 45
Thermal Diffusivity, mm2/s 8.6
13
Thermal Shock Resistance, points 39
19 to 61

Alloy Composition

Carbon (C), % 0 to 0.1
0.93 to 1.1
Chromium (Cr), % 0
1.4 to 1.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
96.5 to 97.3
Manganese (Mn), % 0
0.25 to 0.45
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0