MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. C81400 Copper

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while C81400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 13
11
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 500
370
Tensile Strength: Yield (Proof), MPa 430
250

Thermal Properties

Latent Heat of Fusion, J/g 420
210
Maximum Temperature: Mechanical, °C 320
200
Melting Completion (Liquidus), °C 1660
1090
Melting Onset (Solidus), °C 1610
1070
Specific Heat Capacity, J/kg-K 540
390
Thermal Conductivity, W/m-K 21
260
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
60
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
61

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 49
2.8
Embodied Energy, MJ/kg 840
45
Embodied Water, L/kg 520
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
36
Resilience: Unit (Modulus of Resilience), kJ/m3 880
260
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 31
11
Strength to Weight: Bending, points 31
13
Thermal Diffusivity, mm2/s 8.6
75
Thermal Shock Resistance, points 39
13

Alloy Composition

Beryllium (Be), % 0
0.020 to 0.1
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0.6 to 1.0
Copper (Cu), % 0
98.4 to 99.38
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0
0 to 0.5