MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. C89320 Bronze

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while C89320 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
17
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 500
270
Tensile Strength: Yield (Proof), MPa 430
140

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1660
1050
Melting Onset (Solidus), °C 1610
930
Specific Heat Capacity, J/kg-K 540
360
Thermal Conductivity, W/m-K 21
56
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
15
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
15

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 49
3.5
Embodied Energy, MJ/kg 840
56
Embodied Water, L/kg 520
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
38
Resilience: Unit (Modulus of Resilience), kJ/m3 880
93
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 31
8.5
Strength to Weight: Bending, points 31
10
Thermal Diffusivity, mm2/s 8.6
17
Thermal Shock Resistance, points 39
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
87 to 91
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Nickel (Ni), % 0 to 0.050
0 to 1.0
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.3
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Titanium (Ti), % 98.8 to 99.9
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5