MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. K93050 Alloy

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while K93050 alloy belongs to the iron alloys. There are 18 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is K93050 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 500
500 to 680

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
460
Thermal Expansion, µm/m-K 8.7
12

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 49
4.7
Embodied Energy, MJ/kg 840
65
Embodied Water, L/kg 520
120

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 31
17 to 23
Strength to Weight: Bending, points 31
17 to 21
Thermal Shock Resistance, points 39
16 to 21

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 0
0 to 0.25
Cobalt (Co), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
61.4 to 63.9
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
36
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0.15 to 0.3
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0