MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. N06650 Nickel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while N06650 nickel belongs to the nickel alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is N06650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 13
50
Fatigue Strength, MPa 260
420
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
82
Tensile Strength: Ultimate (UTS), MPa 500
900
Tensile Strength: Yield (Proof), MPa 430
460

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 320
980
Melting Completion (Liquidus), °C 1660
1500
Melting Onset (Solidus), °C 1610
1450
Specific Heat Capacity, J/kg-K 540
440
Thermal Expansion, µm/m-K 8.7
12

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 49
10
Embodied Energy, MJ/kg 840
140
Embodied Water, L/kg 520
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
380
Resilience: Unit (Modulus of Resilience), kJ/m3 880
490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 31
29
Strength to Weight: Bending, points 31
24
Thermal Shock Resistance, points 39
24

Alloy Composition

Aluminum (Al), % 0
0.050 to 0.5
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
12 to 16
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
9.5 to 12.5
Nickel (Ni), % 0 to 0.050
44.4 to 58.9
Niobium (Nb), % 0
0.050 to 0.5
Nitrogen (N), % 0
0.050 to 0.2
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 98.8 to 99.9
0
Tungsten (W), % 0
0.5 to 2.5
Residuals, % 0 to 0.4
0