MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. S15500 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
290 to 430
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
6.8 to 16
Fatigue Strength, MPa 260
350 to 650
Poisson's Ratio 0.32
0.28
Rockwell C Hardness 21
27 to 46
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 500
890 to 1490
Tensile Strength: Yield (Proof), MPa 430
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
820
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
2.7
Embodied Energy, MJ/kg 840
39
Embodied Water, L/kg 520
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 880
890 to 4460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
32 to 53
Strength to Weight: Bending, points 31
26 to 37
Thermal Diffusivity, mm2/s 8.6
4.6
Thermal Shock Resistance, points 39
30 to 50

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 0
2.5 to 4.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
71.9 to 79.9
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0