MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. S32205 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while S32205 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is S32205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
260
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
28
Fatigue Strength, MPa 260
370
Poisson's Ratio 0.32
0.27
Rockwell C Hardness 21
27
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 500
740
Tensile Strength: Yield (Proof), MPa 430
510

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1070
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
3.7
Embodied Energy, MJ/kg 840
50
Embodied Water, L/kg 520
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
190
Resilience: Unit (Modulus of Resilience), kJ/m3 880
630
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
26
Strength to Weight: Bending, points 31
23
Thermal Diffusivity, mm2/s 8.6
4.0
Thermal Shock Resistance, points 39
20

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
22 to 23
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
63.7 to 70.4
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.050
4.5 to 6.5
Nitrogen (N), % 0
0.14 to 0.2
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0