MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. S32803 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while S32803 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
210
Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 13
18
Fatigue Strength, MPa 260
350
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 500
680
Tensile Strength: Yield (Proof), MPa 430
560

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 49
3.7
Embodied Energy, MJ/kg 840
53
Embodied Water, L/kg 520
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
120
Resilience: Unit (Modulus of Resilience), kJ/m3 880
760
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
25
Strength to Weight: Bending, points 31
22
Thermal Diffusivity, mm2/s 8.6
4.4
Thermal Shock Resistance, points 39
22

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.015
Chromium (Cr), % 0
28 to 29
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
62.9 to 67.1
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0 to 0.050
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0
0 to 0.020
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.55
Sulfur (S), % 0
0 to 0.0035
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0