MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. S42010 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while S42010 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is S42010 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
18
Fatigue Strength, MPa 260
220
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 500
590
Tensile Strength: Yield (Proof), MPa 430
350

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
800
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
29
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
3.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 49
2.2
Embodied Energy, MJ/kg 840
30
Embodied Water, L/kg 520
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
95
Resilience: Unit (Modulus of Resilience), kJ/m3 880
310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 31
20
Thermal Diffusivity, mm2/s 8.6
7.9
Thermal Shock Resistance, points 39
21

Alloy Composition

Carbon (C), % 0 to 0.1
0.15 to 0.3
Chromium (Cr), % 0
13.5 to 15
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
80.9 to 85.6
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.85
Nickel (Ni), % 0 to 0.050
0.35 to 0.85
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0