MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. S44700 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
200
Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 13
23
Fatigue Strength, MPa 260
300
Poisson's Ratio 0.32
0.27
Rockwell C Hardness 21
17
Shear Modulus, GPa 40
82
Tensile Strength: Ultimate (UTS), MPa 500
600
Tensile Strength: Yield (Proof), MPa 430
450

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
480
Thermal Expansion, µm/m-K 8.7
11

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 49
3.6
Embodied Energy, MJ/kg 840
49
Embodied Water, L/kg 520
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
120
Resilience: Unit (Modulus of Resilience), kJ/m3 880
480
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 31
20
Thermal Shock Resistance, points 39
19

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0
0 to 0.15
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
64.9 to 68.5
Manganese (Mn), % 0
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0 to 0.050
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0