MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. S82012 Stainless Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while S82012 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is S82012 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
40
Fatigue Strength, MPa 260
480
Poisson's Ratio 0.32
0.28
Rockwell C Hardness 21
27
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 500
800
Tensile Strength: Yield (Proof), MPa 430
560

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
950
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 49
2.4
Embodied Energy, MJ/kg 840
35
Embodied Water, L/kg 520
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
290
Resilience: Unit (Modulus of Resilience), kJ/m3 880
790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
29
Strength to Weight: Bending, points 31
25
Thermal Diffusivity, mm2/s 8.6
3.9
Thermal Shock Resistance, points 39
23

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 0
19 to 20.5
Copper (Cu), % 0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
71.3 to 77.9
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0 to 0.050
0.8 to 1.5
Nitrogen (N), % 0
0.16 to 0.26
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0