MakeItFrom.com
Menu (ESC)

Grade VDC Steel vs. 5086 Aluminum

Grade VDC steel belongs to the iron alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade VDC steel and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 510
65 to 100
Elastic (Young's, Tensile) Modulus, GPa 190
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 1700
270 to 390

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 51
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
31
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
100

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.8
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 47
1180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 60
28 to 40
Strength to Weight: Bending, points 40
34 to 44
Thermal Diffusivity, mm2/s 14
52
Thermal Shock Resistance, points 50
12 to 17

Alloy Composition

Aluminum (Al), % 0
93 to 96.3
Carbon (C), % 0.6 to 0.75
0
Chromium (Cr), % 0 to 0.3
0.050 to 0.25
Copper (Cu), % 0 to 0.060
0 to 0.1
Iron (Fe), % 98.3 to 99.35
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0.5 to 1.0
0.2 to 0.7
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.15 to 0.3
0 to 0.4
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15