MakeItFrom.com
Menu (ESC)

Grade VDSiCr Steel vs. EN AC-45400 Aluminum

Grade VDSiCr steel belongs to the iron alloys classification, while EN AC-45400 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade VDSiCr steel and the bottom bar is EN AC-45400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 590
86
Elastic (Young's, Tensile) Modulus, GPa 190
72
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 1950
260

Thermal Properties

Latent Heat of Fusion, J/g 270
470
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1400
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 46
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
30
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
95

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
10
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 1.5
7.8
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 48
1100

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 70
25
Strength to Weight: Bending, points 45
32
Thermal Diffusivity, mm2/s 12
54
Thermal Shock Resistance, points 58
12

Alloy Composition

Aluminum (Al), % 0
88.4 to 92.9
Carbon (C), % 0.5 to 0.6
0
Chromium (Cr), % 0.5 to 0.8
0
Copper (Cu), % 0 to 0.060
2.6 to 3.6
Iron (Fe), % 96.6 to 97.8
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 0.9
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 1.2 to 1.6
4.5 to 6.0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15