MakeItFrom.com
Menu (ESC)

Grade VDSiCrV Steel vs. EN AC-51500 Aluminum

Grade VDSiCrV steel belongs to the iron alloys classification, while EN AC-51500 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade VDSiCrV steel and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 630
80
Elastic (Young's, Tensile) Modulus, GPa 190
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 2100
280

Thermal Properties

Latent Heat of Fusion, J/g 270
430
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 47
120
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
88

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 1.9
9.0
Embodied Energy, MJ/kg 26
150
Embodied Water, L/kg 50
1150

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 75
29
Strength to Weight: Bending, points 47
36
Thermal Diffusivity, mm2/s 13
49
Thermal Shock Resistance, points 63
13

Alloy Composition

Aluminum (Al), % 0
89.8 to 93.1
Carbon (C), % 0.5 to 0.7
0
Chromium (Cr), % 0.5 to 1.0
0
Copper (Cu), % 0 to 0.060
0 to 0.050
Iron (Fe), % 96.1 to 97.8
0 to 0.25
Magnesium (Mg), % 0
4.7 to 6.0
Manganese (Mn), % 0.4 to 0.9
0.4 to 0.8
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 1.2 to 1.7
1.8 to 2.6
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0.1 to 0.25
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15