MakeItFrom.com
Menu (ESC)

Hot Finished AISI 321 vs. Hot Finished N08800 Stainless Steel

Both hot finished AISI 321 and hot finished N08800 stainless steel are iron alloys. Both are furnished in the hot worked condition. They have 75% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is hot finished AISI 321 and the bottom bar is hot finished N08800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 50
34
Fatigue Strength, MPa 220
150
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 420
340
Tensile Strength: Ultimate (UTS), MPa 590
500
Tensile Strength: Yield (Proof), MPa 220
190

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 480
490
Maximum Temperature: Mechanical, °C 870
1100
Melting Completion (Liquidus), °C 1430
1390
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 17
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 16
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.2
5.3
Embodied Energy, MJ/kg 45
76
Embodied Water, L/kg 140
200

Common Calculations

PREN (Pitting Resistance) 19
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
130
Resilience: Unit (Modulus of Resilience), kJ/m3 130
96
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 4.1
3.0
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 17 to 19
19 to 23
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 65.3 to 74
39.5 to 50.7
Manganese (Mn), % 0 to 2.0
0 to 1.5
Nickel (Ni), % 9.0 to 12
30 to 35
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.7
0.15 to 0.6